Rotation vectors for minimal two torus diffeomorphisms.

schedule le mardi 14 novembre 2017 de 10h30 à 12h00

Organisé par : D. Burguet, P-A. Guihéneuf

Intervenant : Xiao-Chuan Liu (IMPA)
Lieu : Salle Paul Lévy, Campus Jussieu (salle 113, Tour 16/26)

Sujet : Rotation vectors for minimal two torus diffeomorphisms.

Résumé :
In this talk, we will look at pointwise rotation vectors for a smooth two torus diffeomorphism. We show there exist examples where for Lebesuge almost every point of T^2, the pointwise rotation vector is not well defined. That is, when we try to use the usual way to define this number, the limit does not exsit. The method we use, is a variant of Artur Avila's method to obtain a counter-example of Franks-Misiurewicz conjecture. 

This is a joint work with A.Avila and D.Xu