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Chapter I

Branching Brownian motion

We introduce branching Brownian motion and its discrete-time analogue, the branching

random walk. The elementary but useful many-to-one formula is derived. The additive

martingale and the derivative martingale are introduced. The chapter ends with the second-

order asymptotics of the minimal position.

1. Branching Brownian motion

Branching Brownian motion is a simple spatial branching process defined as follows. At

time t = 0, a single particle (also called an “individual”) starts at the origin, and moves

as a standard one-dimensional Brownian motion, whose life-time is an exponential random

variable of parameter 1. When the particle dies, it produces two new particles (we say

that the original particle “splits into two”), moving as independent Brownian motions, each

having a mean 1 exponential random life-time. These particles are subject to the same

splitting rule. And the system goes on indefinitely. See Figure 1 below.

Let

f(x) := 1{x≥0} ,

and let X1, X2, · · · , XN(t)(t) denote the positions of the particles in the system at time t.

Write

u(t, x) := E
(N(t)∏

i=1

f(x+Xi(t))
)
.

1
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Figure 1. Branching Brownian motion

By discussing on the value of the life-time of the initial ancestor, we see that

u(t, x) = e−t E[f(x+B(t))] +

∫ t

0

e−s ds E[u2(t− s, x+B(s)]

= e−t E[f(x+B(t))] + e−t
∫ t

0

er ds E[u2(r, x+B(s)] , (r := t− s)

where (B(s), s ≥ 0) denotes standard Brownian motion. We then arrive at the so-called

F-KPP equation (Fisher [61] who was interested in the evolution of a biological population,

Kolmogorov, Petrovskii and Piskunov [78])

(1.1)
∂u

∂t
=

1

2

∂2u

∂x2
+ u2 − u .

This holds for a large class of measurable functions f . The special form of f we have taken

here is of particular interest, since in this case,

u(t, x) = P
(

min
1≤i≤N(t)

Xi(t) ≥ −x
)
= P

(
max

1≤i≤N(t)
Xi(t) ≤ x

)
,

which is the distribution function of the maximal position of branching Brownian motion at

time t.

The F-KPP equation is known for its travelling wave solutions: let m(t) denote the

median of u, i.e., u(t, m(t)) = 1
2
, then

lim
t→∞

u(t, x+m(t)) = w(x) ,

uniformly in x ∈ R, and w is a wave solution of the F-KPP equation (1.1) at speed 21/2,

meaning that w(x− 21/2t) solves (1.1), or, equivalently,

1

2
w′′ + 21/2w′ + w2 − w = 0 .
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It is proved by Kolmogorov, Petrovskii and Piskunov [78] that limt→∞
m(t)
t

= 21/2, and by

Bramson ([36] and [37]) that

(1.2) m(t) = 21/2t−
3

23/2
log t + C + o(1) , t → ∞ ,

for some constant C.

For further use, we mention a probabilistic interpretation of the travelling wave solution

w. By Lalley and Sellke [80], w can be written as

(1.3) w(x) = E
(
e−C1 D∞ e−21/2x

)
,

where C1 > 0 is a constant, and D∞ > 0 is a random variable whose distribution depends

on the branching mechanism (in our description, it is binary branching). The idea of this

interpretation is also present in the work of McKean [90]. We will come back to this point

in Section 6.

The connection, observed by McKean [90], between the branching system and the F-KPP

differential equation makes the study of branching Brownian motion particularly appealing.1

As such, branching Brownian motion can be used to obtain — or explain — results for

the F-KPP equation. For purely probabilistic approaches in the study of travelling wave

solutions to the F-KPP equation, see Neveu [104], Harris [65], Kyprianou [79]. More recently,

physicists have been much interested in the effect of noise on wave propagation. We are going

to discuss on this feature in more details in Chapter II.

We study branching Brownian motion as a purely probabilistic object. Moreover, the

Gaussian displacement of particles in the system does not play any essential role, which

leads us to study the more general model of branching random walks.

2. Branching random walks

Consider a one-dimensional discrete-time branching random walk. At the beginning,

there is a single particle located at the origin. Its children, who form the first generation,

are positioned according to the distribution of a certain random vector L := (ξ1, · · · , ξN).
2

1Another historic reference is a series of three papers by Ikeda, Nagasawa and Watanabe [71], who were
interested in a general theory connecting probability with differential equations.

2As a matter of fact, the dimension of L can be random (so L is a point process, describing a random
scattering of points in R), and can be possibly infinite. Also, unlike branching Brownian motion, it is possible
that P(ξi = ξj , for some i 6= j) can be positive.
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Each of the particles in the first generation gives birth to new particles that are positioned

(compared to their birth places) according to an independent copy of L ; they form the

second generation. The system goes on according to the same mechanism. We assume that

for any n, each particle at generation n produces new particles independently of each other

and of everything up to the n-th generation. See Figure 2 below.

In the special case that N > 1 is a fixed integer, and that ξ1, · · · , ξN are i.i.d. random

variables, we say that the branching random walk has i.i.d. displacements. It was the case

with branching Brownian motion. However, we will see that in the problems which are of

interest to us, the dependence structure between ξi will seldom cause any serious trouble.

We denote by (V (x), |x| = n) the positions of the particles in the n-th generation, |x|

standing for the generation of the individual x. We always assume that E(N) > 1; i.e., the

branching is supercritical. [However, it is possible that E(N) = ∞.] As such, the system

survives with positive probability.

3. Examples

We give here some examples of branching random walks, and more general hierarchical

fields.

In the literature, the branching random walk bears various names, all leading to equivalent

or similar structure. Let us make a short list.

Example 3.1. (Mandelbrot’s multiplicative cascades). Mandelbrot’s multiplicative

cascades are introduced by Mandelbrot [98], and studied by Kahane [73] and Peyrière [107],

in an attempt of understanding the intermittency phenomenon in Kolmogorov’s turbulence

Figure 2. A branching random walk and its first three generations
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theory. It can be formulated, for example, in terms of a stochastically self-similar measure

on a compact interval. In fact, the standard Cantor set consists in dividing, at each step,

a compact interval into three identical sub-intervals and removing the middle one. Instead

of splitting an interval into identical sub-intervals, we can do it according to a given three-

dimensional distributions, and the resulting lengths of sub-intervals form a Mandelbrot’s

multiplicative cascade. If we look at the logathrithm of the lengths, we have a branching

random walk.

Mandelbrot’s multiplicative cascades also bear other names, such as random recursive

constructions (Mauldin and Williams [99]). A key ingredient is to study fixed points of

the so-called smoothing transforms (Durrett and Liggett [55], Alsmeyer [9], Alsmeyer,

Biggins and Meiners [10]). We will briefly come back to this point in Section 6. For surveys

on these topics, see Liu [81], Biggins and Kyprianou [27]. �

Example 3.2. (Gaussian free fields and log-correlated Gaussian fields). The two-

dimensional discrete Gaussian free field possesses a complicated structure of extreme values,

but it turns out possible to compare it with that of the branching random walk. By compar-

ison to analogue results for branching random walks, many deep results have been recently

established for Gaussian free fields and more general logarithmically correlated Gaussian

fields (Bolthausen, Deuschel and Giacomin [31], Madaule [89], Biskup and Louidor [30],

Ding, Roy and Zeitouni [51]). In parallel, in the continuous-time setting, following Kahane’s

pioneer work in [74], the study of Gaussian multiplicative chaos has witnessed impor-

tance recent progress (Duplantier, Rhodes, Sheffield and Vargas [53], Garban, Rhodes and

Vargas [63], Rhodes and Vargas [108]).

Via Dynkin’s isomorphism theorem, local times of Markov processes are closely connected

to (the square of) some Gaussian processes. As such, new lights have been recently shed on

the cover time of the two-dimensional torus by simple random walk (Ding [50], Belius and

Kistler [16]). �

Example 3.3. (Directed polymers on trees). In [49], Derrida and Spohn introduced

directed polymers on trees, as a hierarchical extension of Derrida’s REM (Random Energy

Model) for spin glasses. In this setting, the energy of a polymer, being the sum of i.i.d.

random variables assigned on each edge of the tree, is exactly a branching random walk

with i.i.d. displacements. The continuous-time setting has also been studied in the literature

(Bovier and Kurkova [35]).

Directed polymers on trees also provide an interesting example of random environment
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for random walks. The tree-valued random walk in random environment is an extension

of Lyons’ biased random walk on trees ([82], [83]), in the sense that the random walk is

randomly biased. Chapter III will be devoted to this model. �

The list of interesting examples can be very long. Let us add just a couple more: Ar-

guin [11] has given a series of lectures on his work in progress on characteristic polynomials of

unitary matrices, and on the Riemann zeta function on the critical line, whereas Äıdékon [5]

has successfully applied branching random walk techniques to CLE (Conformal Loop En-

sembles).

4. The basic assumption

In order to obtain universality results, we need to exclude a few “pathological cases”.

Throughout, we assume3

(∗) E
( ∑

x: |x|=1

e−V (x)
)
= 1, E

( ∑

x: |x|=1

V (x) e−V (x)
)
= 0,

and we call it Assumption (∗). In terms of the point process L := (ξ1, · · · , ξN), Assumption

(∗) means E(
∑N

i=1 e
−ξi) = 1 and E(

∑N
i=1 ξi e

−ξi) = 0.

In general, given a branching random walk (V (x)), we should be able to find a > 0 and

b ∈ R such that the linear transformation

V̂ (x) := aV (x) + b|x| ,

which gives another branching random walk, satisfies Assumption (∗). However, the existence

of the pair (a, b) is not automatic. There are examples of branching random walks for which

the existence of (a, b) fails. Loosely speaking, the existence of (a, b) fails if and only if the

law of inf i ξi is bounded from below and E(
∑

i 1{ξi=suppmin}) ≥ 1, with suppmin denoting

the minimum of the support of the law of inf i ξi (i.e., the essential infimum of inf i ξi). In

particular, for a branching random walk with i.i.d. Gaussian displacements, the pair (a, b)

exist.

For an elementary but complete discussion on the existence of (a, b), see the arXiv version

of Jaffuel [72], or Bérard and Gouéré [20].

3We implicitly assume in the second part that E(
∑

x: |x|=1 |V (x)|e−tV (x)) < ∞.
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Exercise 4.1. Let (V (x)) be a branching random walk with i.i.d. displacements and satisfy

Assumption (∗). Then E(ξ1) > 0. As such, along each branch, the random walk has a

positive drift.

Special case: if the i.i.d. displacements are Gaussian, it must be N (2 logm, 2 logm),

where m := E(N) is the mean number of branches. �

5. The many-to-one formula

Assume E(
∑

x: |x|=1 e
−V (x)) = 1, which is the first part of Assumption (∗).

Let S0 := 0 and let (Sn−Sn−1, n ≥ 1) be a sequence of i.i.d. real-valued random variables

such that for any measurable function h : R → [0, ∞),

(5.1) E[h(S1)] = E
( ∑

x: |x|=1

e−V (x)h(V (x))
)
.

The law of S1 is well-defined due to our assumption E(
∑

x: |x|=1 e
−V (x)) = 1.

Theorem 5.1. (The many-to-one formula) Under Assumption (∗), for any n ≥ 1 and

any measurable function g : Rn → [0, ∞), we have4

E
[ ∑

x: |x|=n

g(V (x1), · · · , V (xn))
]
= E

[
eSng(S1, · · · , Sn)

]
,

where xi is the ancestor of x at generation i, with xn := x.

Proof. We prove by induction in n. For n = 1, this is the definition of the distribution of S1.

Assume the identity proved for n. Then, for n + 1, we condition on the branching random

walk in the first generation; by the branching property, this yields

E
[ ∑

|x|=n+1

g(V (x1), · · · , V (xn+1))
]

= (E⊗ Ẽ)
[ ∑

|y|=1

∑

|z̃|=n

g(V (y), V (y) + Ṽ (z̃1), · · · , V (y) + Ṽ (z̃n))
]
,

where Ẽ is expectation with respect to the branching random walk (Ṽ (z̃ )) which is inde-

pendent of (V (y), |y| = 1). By induction hypothesis, for any u ∈ R,

Ẽ
( ∑

|z̃|=n

g(u+ Ṽ (z̃1), · · · , u+ Ṽ (z̃n))
)
= Ẽ

(
eS̃ng(u, u+ S̃1, · · · , u+ S̃n)

)
,

4For notational simplification, we often write
∑
|x|=n(· · · ) instead of

∑
x: |x|=n(· · · ).
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with the random walk (S̃j, j ≥ 1) independent of (V (y), |y| = 1), and distributed as

(Sj, j ≥ 1) under P. Since

E
[ ∑

|y|=1

h(V (y))
]
= E

[
eS1h(S1)

]
,

it remains to note that (E ⊗ Ẽ)[eS1+S̃ng(S1, S1 + S̃1, · · · , S1 + S̃n)] is nothing else but

E[eSn+1g(S1, S2, · · · , Sn+1)]. This implies the desired identity for all n ≥ 1. �

Remark 5.2. (i) Under Assumption (∗), we have E(S1) = 0, which means that (Sn, n ≥ 0)

is a mean-zero non-degenerate5 random walk. In particular, if the branching random walk

has i.i.d. displacements, the walk along each branch is strictly larger than the drift of the

new random walk (Sn). As a matter of fact, behind the innocent-looking new random walk

(Sn) is a change-of-probabilities setting, which we will study in more details in Chapter IV.

(ii) The many-to-one formula is ready for use in the computation of the first moment,

but requires some additional work for the computation of higher-order moments. For a

“many-to-few” version, see Harris and Roberts [67]. �

6. A pair of martingales

Under Assumption (∗), there are a pair of martingales naturally associated with the

branching random walk:

Mn :=
∑

|x|=n

e−V (x),

Dn :=
∑

|x|=n

V (x)e−V (x) ,

with respect to their natural filtrations. In the literature, (Mn) is referred to as an additive

martingale, whereas (Dn) is called a derivative martingale.

Since (Mn) is a non-negative martingale, it converges a.s. to a finite random variable; the

convergence does not hold in L1, as (Mn) is not uniformly integrable:

Theorem 6.1. Under Assumption (∗), we have 6

Mn → 0, a.s.

5That is, not identically zero.
6This is, in fact, a special case of a more general result called the Biggins martingale convergence theorem

(Biggins [25], Lyons [84]).
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Proof. Postponed to Chapter IV. �

We need to be careful with “a.s.” (or the forthcoming “in probability”). If the point

process L is empty with positive probability, the system dies out at finite time with positive

probability. So “a.s.” really means almost surely on the system’s non-extinction.

A straightforward consequence of Theorem 6.1 is

(6.1) min
|x|=n

V (x) → ∞, a.s.

So, under Assumption (∗), even though the branching random walk can take negative values

at some sites, it becomes very large when the generation becomes large. Looking at the

derivative martingale Dn :=
∑
|x|=n V (x)e−V (x); it is of no surprise that it also converges

a.s.:7

Theorem 6.2. (Biggins and Kyprianou [26]) If E[
∑
|x|=1 V (x)2 e−V (x)] < ∞, then

(Dn, n ≥ 0) converges a.s. to a non-negative limit, denoted by D∞.

We do not prove Theorem 6.2, though we will have enough mathematical tools in Chap-

ter IV. Attention: even though D∞ exists, nothing guarantees that it is (strictly) positive,

because the positivity of D∞ requires some additional integrability condition. Biggins and

Kyprianou [26] and Äıdékon [2] provided sufficient conditions for the positivity of D∞; re-

cently, a necessary and sufficient condition is established by Chen [47].

The positive random variable D∞ in (1.3) is the continuous-time analogue for branching

Brownian motion, and is proved to be positive by Lalley and Sellke [80]. As a matter of

fact, McKean [90] used M∞ (the limit of the additive martingale) in the expression (1.3)

for w (the uniqueness in law, up to a constant multiple, of the fixed point being known; see

the survey by Biggins and Kyprianou [27]). In view of Theorem 6.1, it is unfortunate that

McKean used the vanishing solution. It took about a decade to see the error fixed, by Lalley

and Sellke [80].8

Although we do not study the derivative martingale in depth in these notes,9 it plays

a crucial role when one looks for refined properties of the branching random walk. For

7The sufficient condition in [26] is slightly weaker than in the statement of Theorem 6.2.
8Actually, McKean [90] was not that wrong: it is possible ([8]) to prove that n1/2 Mn

Dn
converges in prob-

ability to a positive constant. So the approach used by McKean [90] is all right, as long as the additive
martingale is multiplied by n1/2.

9And even completely neglect another fundamental martingale: the multiplicative martingale.
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example, it comes as of no surprise that it was exploited by Duplantier, Rhodes, Sheffield

and Vargas [53] in the study of critical Gaussian multiplicative chaos.

It is obvious that both M∞ = 0 and D∞ are fixed points (in distribution) of the following

smoothing transform:

Z
(law)
=

∑

|x|=1

e−V (x)Z(x) ,

where, conditioning on (V (x), |x| = 1), Z(x) are independent copies of Z. This is a simple

example to illustrate the importance of fixed points of smoothing transform.

7. Extreme positions

We work under Assumption (∗), and are interested in the minimal position min|x|=n V (x).

We have already seen in (6.1) that

min
|x|=n

V (x) → ∞, a.s.

The question is at which speed min|x|=n V (x) goes to infinity. A general result called the law

of large numbers for branching random walks (Biggins [24], Kingman [77], Hammersley [64])

applied under Assumption (∗) yields that

(7.1)
1

n
min
|x|=n

V (x) → 0, a.s.

Here is the answer to our question, and is a weak analogue of Bramson’s estimate (1.2):

Theorem 7.1. Under Assumption (∗) and suitable integrability condition, we have

1

logn
min
|x|=n

V (x) →
3

2
, in probability.

Proof. We only prove the lower bound (and outline the proof of the upper bound), namely,

for any ε > 0,

P
(
min
|x|=n

V (x) ≤ (
3

2
− ε) logn

)
→ 0, n → ∞.

Let K > 0 and 0 < a < 3
2
. Let

Zn :=
∑

|x|=n

1{V (x)≤a logn, V (xi)≥−K, ∀1≤i≤n}.
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By the many-to-one formula (Theorem 5.1), we have,

E(Zn) = E
{
eSn 1{Sn≤a logn, Si≥−K, ∀1≤i≤n}

}

≤ naP
{
Sn ≤ a log n, Si ≥ −K, ∀1 ≤ i ≤ n

}
.

For n such that a logn ≥ 1, we have P{Sn ≤ a logn, Sn ≥ −K} ≤ 1
n(3/2)+o(1) . See Figure 3

below.

Since a < 3
2
, it follows that limn→∞E(Zn) = 0. A fortiori, Zn → 0 in probability.

We already know that min|x|=n V (x) → ∞ a.s. This yields the desired lower bound:

P{min|x|=n V (x) ≥ (3
2
+ ε) logn} → 0 for all ε > 0.

We provide a sketch for the upper bound: for all ε > 0,

P
(
min
|x|=n

V (x) ≤ (
3

2
+ ε) logn

)
→ 1, n → ∞.

We are tempted to imitate the argument used in the proof of the lower bound by taking

Zn :=
∑
|x|=n 1{V (x)≤( 3

2
+ε) logn, V (xi)≥−K, ∀1≤i≤n}, using the Cauchy–Schwarz inequality

P(Zn ≥ 1) ≥
[E(Zn)]

2

E(Z2
n)

.

and bounding E(Zn) from below while bounding E(Z2
n) from above.

Unfortunately, E(Z2
n) is very large in this case. So we slightly reduce the size of the event

in Zn by considering (writing an := (3
2
+ ε) logn)

Yn :=
∑

|x|=n

1{V (x)≤an, V (xi)≥
an
n

i−K, ∀1≤i≤n} ,

where K > 0 is a large but fixed constant. The first moment E(Yn) can be estimated as

before. For the second moment E(Y 2
n ), we argue that

E(Y 2
n ) = E

{ ∑

|x|=n

∑

|y|=n

1{V (x)≤an, V (y)≤an, V (xi)≥
an
n

i−K, V (yi)≥
an
n

i−K, ∀1≤i≤n}

}

= E(Yn) + E
{ n−1∑

j=0

∑

|z|=j

1{V (zi)≥
an
n

i−K, ∀1≤i≤j} ×

×
∑

(xj+1, yj+1)

∑

(x, y)

1{V (xk), V (yk)≥
an
n

k−K, ∀j<k≤n, V (x)≤an, V (y)≤an}

}
,
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Figure 3. Computing P{Sn ≤ a logn, Sn ≥ −K}

−K

a logn

n
3

2n
3 n

1 2 3

i

Si

×

where, the double sum
∑

(xj+1, yj+1)
is over pairs (xj+1, yj+1) of distinct children of z, whereas

∑
(x, y) is over pairs (x, y) with |x| = |y| = n such that10 x ≥ xj+1 and y ≥ yj+1.

We apply the Markov property at generation j+1 and use the many-to-one formula to deal

with the (conditional) expectation of
∑

(x, y). The (conditional) expectation of
∑

(xj+1, yj+1)

is taken care of by an appropriate assumption of integrability for the point process L :=

(ξ1, · · · , ξN). Finally, the expectation of
∑
|z|=j, for any j, is treated by another application

of the many-to-one formula. After some tedious computations, we arrive at:

E(Y 2
n ) ≤ C [E(Yn)]

2 ,

for some constant C > 1 and all sufficiently large n (say n ≥ n0). So

P
(
min
|x|=n

V (x) ≤ (
3

2
+ ε) logn

)
≥

1

C
, ∀n ≥ n0 .

Our goal is to say that C > 1 can be chosen as close to 1 as possible. This cannot be

achieved by making the computation as precise as possible, but can be easily done by means

of the tree structure. Indeed, fix η > 0, and let k = k(η) be sufficiently large such that

(1− 1
C
)N

k
< η.11 Then

P
{

min
|x|=n+k

V (x) > max
|y|=k

V (y) + (
3

2
+ ε) logn

}

≤
[
P
{
min
|x|=n

V (x) > (
3

2
+ ε) logn

}]Nk

,

10By x ≥ y, we mean either x = y, or y is an ancestor of x.
11By doing so, we assume implicitly that N is not random. In the general case (i.e., when it is random),

we can apply a similar argument by taking a random k.
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which is bounded by (1− 1
C
)N

k
< η. This yields the desired upper bound in Theorem 7.1.�

The reason for which we have not given full details of the proof of Theorem 7.1 is that

the theorem is weak: much more is true.

Theorem 7.2. (Aı̈dékon [2]). Under Assumption (∗) and suitable integrability condition,

if the distribution of L is non lattice,12 then

min
|x|=n

V (x)−
3

2
logn

converges weakly to a Gumbel distribution shifted at the random position log(cD∞), where

c ∈ (0, ∞) is a constant, and D∞ > 0 is the almost sure limit of the derivative martingale.

This deep result, like the corresponding result of Lalley and Sellke [80] for branching

Brownian motion, shows the important role played by the derivative martingale in the asymp-

totics of the minimal position. See also the recent work of Bramson, Ding, and Zeitouni [38].

We now look at the sample path of the branching random walk leading to the minimal

position13 at time n. Intuitively, it would behave like a Brownian motion on [0, n], starting

at 0 and ending around 3
2
logn, and staying above the line i 7→

3
2
logn

n
i for 0 ≤ i ≤ n. If

we normalise this sample path with the same scaling as Brownian motion, then we would

expect it to behave asymptotically like a normalised Brownian excursion. This is rigorously

proved by Chen [46].

More precisely, let |x∗n,n| = n be such that V (x∗n,n) = min|x|=n V (x), and for 0 ≤ i ≤ n,

let x∗n,i be the ancestor of x∗n,n in the i-th generation. Let σ2 := E(
∑
|x|=1 V (x)2e−V (x)).

Theorem 7.3. (Chen [46]). Under Assumption (∗) and suitable integrability condition,

(V (x∗n,⌊nt⌋)

(σ2 n)1/2
, t ∈ [0, t]

)

converges weakly in C([0, 1], R) to the normalised Brownian excursion.14

12That is, no lattice supports L .
13If there are several minima, one can choose any one at random according to the uniform distribution.
14A normalised Brownian excursion can be formally defined as a standard Brownian bridge conditioned

to be non-negative. Rigorously, if (B(t), t ≥ 0) is a standard Brownian motion, writing G := sup{t ≤ 1 :

B(t) = 0} and D := inf{t ≥ 1 : B(t) = 0}, then ( |B(G+(D−G)t)|
(D−G)1/2

, t ∈ [0, 1]) is a normalised Brownian

excursion.
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For any vertex x with |x| ≥ 1, let us write

(7.2) V (x) := max
1≤i≤|x|

V (xi) ,

which stands for the maximum value of the branching random walk along the path connecting

the root and x. How small can V (x) when |x| → ∞? If we take x to be the (or a) vertex

on which the branching random walk reaches the minimum value at generation n, then we

have seen in the previous paragraph that V (x) has the order of magnitude n1/2. Can we do

better?

The answer is yes.

Theorem 7.4. (Fang and Zeitouni [57]). Under Assumption (∗) and suitable integrability

condition,

lim
n→∞

1

n1/3
min
|x|=n

V (x) =
(3π2σ2

2

)1/3
, a.s.

Theorem 7.4, which will be useful in Chapter III, can be proved by means of the many-

to-one formula.

There has been an important number of recent results on extreme values in the branch-

ing random walks. See for example Arguin, Bovier and Kistler [12], [13], [14] and [15],

Roberts [109], Äıdékon et al. [6] for branching Brownian motion; Addario-Berry and Reed [1],

Hu and Shi [68], Madaule [88] for branching random walks, together with the references

therein. For a “spatial” version of convergence of the extremal process, see Bovier and

Hartung [34]. For extensions to models with a time-inhomogeneous branching mechanism,

see Fang and Zeitouni [58]–[59], Maillard and Zeitouni [93], Mallein [94]–[95], Bovier and

Hartung [32]–[33].



Chapter II

Branching random walks with
selection

We study two models of branching random walks with selection, both proposed and

studied by Derrida and his coauthors. In the first model, an absorbing barrier is present

with a slope that is slightly greater than the asymptotic speed of the minimal position in

the branching random walk without selection. We study the asymptotic behaviour of the

survival probability when the difference between the slope of the absorbing barrier and the

speed of the minimal position tends to 0. In the second model, the number of individuals in

each generation is fixed to be N ≥ 1; only the N individuals with the smallest spatial values

in each generation survive. Let vN denote the asymptotic speed of the system; we study the

asymptotecs of vN when N goes to infinity.

1. Branching random walks with an absorbing barrier

Branching processes were introduced by Galton and Watson in the study of survival

probability for families in Great Britain. In the supercritical case of the Galton–Watson

branching process, when the system survives, the number of individuals in the population

grows exponentially fast, a phenomenon that is not quite realistic in biology. From this

point of view, it sounds natural to impose a criterion of selection, according to which only

some individuals in the population are allowed to survive, while others are eliminated from

the system, as well as their descendants.

In this section, we consider branching random walks in the presence of an absorbing

barrier: any individual lying above the barrier gets erased. Although the study of branching

diffusions with absorption goes back to Sevast’yanov [110] and Watanabe [111], it is the

15
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work of Kesten [76] on branching Brownian motion with an absorbing barrier that is the

most relevant to the topic in this chapter. For recent progress on and refined properties

of branching Brownian motion, see Berestycki, Berestyki and Schweinsberg [22] and [23],

Äıdékon and Harris [7]. For the corresponding study on the one-sided F-KPP equation, see

Harris, Harris and Kyprianou [66].

Let (V (x)) denote a branching random walk. Throughout the section, we work under

Assumption (∗):

(∗) E
( ∑

|x|=1

e−V (x)
)
= 1, E

( ∑

|x|=1

V (x)e−V (x)
)
= 0,

We recall that this implies (see (7.1) in Chapter I) that 1
n
min|x|=n V (x) → 0 a.s.

Let ̺(ε) denote the survival probability of the system with an absorbing barrier of slope

ε, that kills all individuals whose position is above or on the barrier. According to Biggins,

Lubachevsky, Shwartz and Weiss [28], ̺(ε) > 0 if and only if ε > 0. What can we say about

̺(ε) when ε ↓ 0? This was a question raised by Pemantle [106].

Theorem 1.1. Under Assumption (∗) and suitable integrability condition,

̺(ε) = exp
(
− (1 + o(1))

πσ

(2ε)1/2

)
, ε ↓ 0,

where σ2 := E(
∑
|x|=1 V (x)2e−V (x)).

The proof of Theorem 1.1 relies on a second-moment argument by applying the many-

to-one formula (Theorem 5.1 in Chapter I). For more details, see [62], and also [20] for a

new proof, and some additional precision on the o(1) expression. For branching Brownian

motion, (much) more is known, see Berestycki, Berestyki and Schweinsberg [22], Äıdékon

and Harris [7].

Theorem 1.1 also plays a crucial role in the study of branching random walks with

competition, described in the next section.

2. Branching random walks with competition

Starting from 1990s, physicists have been interested in the slowdown phenomenon in the

wave propagation of the F-KPP equation (Breuer, Huber and Petruccione [39]). Instead of
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the standard F-KPP equation1

∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u) ,

with initial condition u(0, x) = 1{x<0}. Brunet and Derrida [40] introduced the cut-off

version of the F-KPP equation:

∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u) 1{u≥ 1

N
} ,

and discovered that the solution to the equation with cut-off has a wave speed that is slower

than the standard speed by a difference of order (logN)−2 when N is large.2

Later on, Brunet and Derrida [41] introduced a related F-KPP equation with white noise:

∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u) +

(u(1− u)

N

)1/2 ·

W ,

where
·

W is the standard space-time white noise. Once again, they found that the solution

to the noised F-KPP equation has a wave speed that is delayed, compared to the standard

speed, by a quantity of order (logN)−2 when N is large. This has been mathematically

proved by Mueller, Mytnik and Quastel [101] and [102].

On the other hand, the following so-called N -BRW was introduced by Brunet, Derrida,

Mueller and Munier ([42], [43] and [44]): in the branching random walk (V (x)), at each

generation, only the N individuals having the smallest spatial values survive. The positions

of the individuals in the resulting N -BRW are denoted by (V N(x)). Since N is fixed, it is

not hard to check that3

vN := lim
n→∞

1

n
max
|x|=n

V N(x) = lim
n→∞

1

n
min
|x|=n

V N(x) ,

exists a.s., and is deterministic. Several predictions are made by these authors (see [43] in

particular), for example, concerning the velocity vN :

(2.1) vN =
π2σ2

2(logN)2

(
1−

(6 + o(1)) log logN

logN

)
, N → ∞ ,

1We have replaced u by 1− u (thus considering the tail distribution, instead of the distribution function,
of the maximum of branching Brownian motion) in the F-KPP equation (1.1) of Chapter I.

2The notation is unfortunate, because N in this chapter has nothing to do with the random variable N

representing the number of children for individuals in the system.
3In order to avoid trivial discussions, we assume that there are no leaves in the branching random walks,

i.e., with probability one, every particle produces at least one child.
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where, as before, σ2 := E(
∑
|x|=1 V (x)2e−V (x)). [Of course, what is really interesting in the

conjectured precision (6+o(1)) log logN
logN

on the right-hand side is the universality of the main

term.] All these predictions remain open, including a very interesting one concerning the

genealogy of the particles in a suitable scale that would converge to the Bolthausen–Sznitman

coalescent, though there is strong evidence that they are true in view of the recent progress

made by Berestycki, Berestycki and Schweinsberg [23].

However, the following has been remarkably proved by Bérard and Gouéré [19] by means

of a rigorous argument:

Theorem 2.1. Under Assumption (∗) and suitable integrability condition,4

vN ∼
π2σ2

2(logN)2
, N → ∞ .

where σ2 := E(
∑
|x|=1 V (x)2e−V (x)).

Other rigorous results concerning the N -BRW (or the analogue for branching Brown-

ian motion) have been obtained by Durrett and Remenik [56], Maillard [92], Bérard and

Maillard [21], Mallein [96]–[97].

The proof of Theorem 2.1 is technical, requiring several delicate couplings between the N -

BRW and the usual branching random walk in an appropriate scale. We describe a heuristic

argument to see why vN should behave asymptotically like π2σ2

2(logN)2
.

The basic idea is that the following two properties are alike:

(a) A branching random walk, with an absorbing barrier of slope ε and starting with N

particles at the origin, survives;

(b) An N -BRW moves at speed ≤ ε.

In (a), the survival probability is 1− (1− ̺(ε))N , which suggests that vN would behave

like ε = ε(N) where ε is defined by

̺(ε) ≈
1

N
.

Solving the equation by means of Theorem 1.1, we obtain:

ε ∼
π2σ2

2(logN)2
,

which gives Theorem 2.1.

4Notation: By aN ∼ bN , N → ∞, we mean limN→∞
aN

bN
= 1.
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Bérard and Gouéré [19] have succeeded in making the heuristic argument rigorous. Un-

fortunately, it is believed that the heuristic will fail to lead to what is conjectured in (2.1).

In other words, deeper understanding of the N -BRW will be required for a proof of (2.1).
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Chapter III

Biased random walks on trees

So far, we have studied branching Brownian motion and branching random walks more

or less indifferently. This chapter is devoted to an application of branching random walks,

namely, randomly biased random walks on trees, and it concerns branching random walks

only: no version for branching Brownian motion is involved. Randomly biased random

walks on trees have been introduced by Lyons and Pemantle [85], extending the model of

deterministically biased random walks on trees studied in depth by Lyons [82]–[83].

1. A simple example

Before introducing the general model, let us start with a simple example.

Example 1.1. Consider a rooted regular binary tree, and add a parent
←
∅ to the root ∅.1

The resulting tree is a planted tree. We give a random colour to each of the vertices of

the tree; a vertex is coloured red with probability pred, and blue with probability pblue, with

pred > 0 and pblue > 0 such that pred + pblue = 1.

A random walker performs a discrete-time random walk on the tree, starting from the

root ∅. At each step, the walk stays at a vertex for a unit of time, then moves to one of

the neighbours (either the parent, or one of the two children). The transition probabilities

are a↑red (moving to the parent), a
(1)
red and a

(2)
red (moving to either of the children) if the site

where the walker stays currently is red, or a↑blue, a
(1)
blue and a

(2)
blue if the site is blue. As such,

a↑red, a
(1)
red, a

(2)
red, a

↑
blue, a

(1)
blue and a

(2)
blue are positive numbers such that

a↑red + a
(1)
red + a

(2)
red = 1 = a↑blue + a

(1)
blue + a

(2)
blue .

1The root ∅ is a vertex of the tree, but
←
∅ is not considered as a vertex of the tree.

21
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We assume that
←
∅ is reflecting: each time the walk is at

←
∅, it automatically comes back

to ∅ in the next step. �

The usual questions arise naturally: Is the random walker recurrent or transient? What

can be said about its position after n steps? What is the maximal displacement in the first

n steps?

2. The maximal displacement

Let T be a planted regular N -ary tree. For any x ∈ T, let
←
x denote the parent of x

(recalling that
←
∅ is not considered as a vertex of T), and x(1), · · · , x(N) the children of

x. Let (ω(x), x ∈ T) be a family of i.i.d. random vectors, with ω(x) = (ω(x, y), y ∈

{
←
x}∪{x(1), · · · , x(N)}). We assume that ω(∅, y) > 0 P-a.s., for y ∈ {

←
∅}∪{∅(1), · · · , ∅(N)},

and that ω(∅,
←
∅) +

∑N
i=1 ω(∅, ∅(i)) = 1. In Example 1.1, ω(∅) (or any ω(x), for x ∈ T)

takes two possible values, with probability pred and pblue, respectively.

For each given ω (which, in Example 1.1, means that all the colours are known), let

(Xn, n ≥ 0) be a Markov chain with X0 = ∅ with transition probabilities

Pω(Xn+1 =
←
x |Xn = x) = ω(x,

←
x),

Pω(Xn+1 = x(i) |Xn = x) = ω(x, x(i)), 1 ≤ i ≤ N ,

and Pω(Xn+1 = y |Xn = x) = 0 if y /∈ {
←
x} ∪ {x(1), · · · , x(N)}.

Let us first do some elementary computations. Assume that the walk is recurrent. For

any vertex x ∈ T, we define

Tx := inf{i ≥ 0 : Xi = x},

the first hitting time at x, and also

T+
∅

:= inf{i ≥ 1 : Xi = ∅} ,

the first return time to the root.

Let x ∈ T with |x| = n ≥ 1. For any 0 ≤ k ≤ n, write

ak := Pω{Tx < T∅ |X0 = xk} .

Then a0 = 0, an = 1, and for 1 ≤ k < n,

ak =
ω(xk, xk+1)

ω(xk, xk+1) + ω(xk, xk−1)
ak+1 +

ω(xk, xk−1)

ω(xk, xk+1) + ω(xk, xk−1)
ak−1 ,
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which means

ak+1 − ak =
ω(xk, xk−1)

ω(xk, xk+1)
(ak − ak−1) .

Iterating the procedure, we obtain, for 1 ≤ k < n,

ak+1 − ak =
( k∏

j=1

ω(xj, xj−1)

ω(xj, xj+1)

)
(a1 − a0) =

( k∏

j=1

ω(xj , xj−1)

ω(xj , xj+1)

)
a1 ,

due to the fact that a0 = 0. Summing on both sides over k ∈ [0, n−1]∩Z : on the left-hand

side, we have
∑n−1

k=0(ak+1 − ak) = an − a0 = 1, so

1 = a1

n−1∑

k=0

k∏

j=1

ω(xj, xj−1)

ω(xj, xj+1)
,

with the notation
∏0

j=1 := 1. This yields

Pω{Tx < T∅ |X0 = x1} = a1 =
1

∑n−1
k=0

∏k
j=1

ω(xj , xj−1)

ω(xj , xj+1)

.

If the walk starts at X0 = ∅, we obtain:

Pω{Tx < T+
∅
} = ω(∅, x1)Pω{Tx < T∅ |X0 = x1} =

ω(∅, x1)∑n−1
k=0

∏k
j=1

ω(xj , xj−1)

ω(xj , xj+1)

.

Writing

V (y) =

|y|−1∑

i=0

log
ω(yi, yi−1)

ω(yi, yi+1)
, y ∈ T\{∅} , (y−1 :=

←
∅)

we immediately see that (V (y), y ∈ T\{∅}) is a branching random walk in the sense of the

previous chapters!

By definition,
∏k

j=1
ω(xj , xj−1)

ω(xj , xj+1)
= eV (xk+1)−V (x1), so that

Pω{Tx < T+
∅
} =

ω(∅, x1)∑n−1
k=0 e

V (xk+1)−V (x1)
=

ω(∅, x1) e
V (x1)

∑n
i=1 e

V (xi)
=

ω(∅,
←
∅)∑n

i=1 e
V (xi)

.

This simple formula tells us that V plays the role of potential: the higher the potential value

is on the path {x1, · · · , xn}, the harder it is for the walk to reach x.

We assume from now on

(∗) E
( ∑

|x|=1

e−V (x)
)
= 1, E

( ∑

|x|=1

V (x)e−V (x)
)
= 0 .
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A general theorem by Lyons and Pemantle [85] tells us that (∗) ensures the recurrence

of the walk (for a proof using Mandelbrot’s multiplicative cascades, see Menshikov and

Petritis [100]). Viewing ω from the point of view of V , it is now clear that instead of the

N -ary regular tree, we can define the walk on a more general supercritical Galton–Watson

tree.2 When V is associated with L = (ξ1, · · · , ξN) = (log λ, · · · , log λ), where λ > 0 is

a fixed parameter, we recover Lyons’s λ-biased random walk on Galton–Watson trees ([82],

[83]), who proved that the λ-biased random walk is recurrent if and only if λ ≥ E(N).

For the λ-biased random walk, it is known that |Xn|
n

converges a.s. to a constant, denoted

by v(λ). Lyons, Pemantle and Peres [87] conjectured that λ 7→ v(λ) is non-increasing on

[0, E(N)). This monotonicity has been established by Ben Arous, Hu, Olla and Zeitouni [18]

for λ in the neighbourhood of E(N), by Ben Arous, Fribergh and Sidoravicius [17] for λ in

the neighbourhood of 0, and by Äıdékon [4] for λ ∈ [0, 1].

We often work under the “annealed measure”

P( · ) := E[Pω( · )] ,

by taking average over the “environment” ω.

Writing, for n ≥ 1,

Hn := inf{i : |Xi| = n} ,

the first time the walk hits the n-th generation. For any x ∈ T with |x| = n, we have

Hn ≤ Tx, so Pω{Hn < T+
∅ } ≥ Pω{Tx < T+

∅ }. Taking maximum over all vertices in the n-th

generation, this leads to:

Pω{Hn < T+
∅
} ≥ max

|x|=n
Pω{Tx < T+

∅
} = max

|x|=n

ω(∅,
←
∅)∑n

i=1 e
V (xi)

≥
ω(∅,

←
∅)

n
e−min|x|=n V (x) ,

where V (x) := max1≤i≤|x| V (xi), as in (7.2) of Chapter I. Applying Theorem 7.4 of Chapter

I, we obtain:

lim inf
n→∞

1

n1/3
logPω{Hn < T+

∅
} ≥ −

(3π2σ2

2

)1/3
=: −θ , P-a.s.,

where σ2 := E(
∑
|x|=1 V (x)2e−V (x)) as before.

Let, for any k ≥ 1,

Lk :=
k∑

i=1

1{Xi=∅} ,

2Actually, the genealogical tree is even more general than the supercritical Galton–Watson tree, because
we do not exclude the situation that a particle produces infinitely many children with positive probability.
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which stands for the number of visits3 at the root ∅ in the first k steps. Then for any j ≥ 1

and all ε > 0,

Pω{LHn > j} = [Pω{Hn > T+
∅
}]j ≤

[
1− e−(1+ε)θn1/3

]j
≤ exp

(
− j e−(1+ε)θn1/3

)
,

P-almost surely for all sufficiently large n (say n ≥ n0(ω); n0(ω) does not depend on j).

Taking j := ⌊e(1+2ε)θn1/3
⌋, we see that

∑

n

Pω{LHn ≥ ⌊e(1+2ε)θn1/3

⌋} < ∞ , P-a.s.

This implies, by the Borel–Cantelli lemma, that

lim sup
n→∞

logLHn

n1/3
≤ θ , P-a.s.

It is known, and not hard, to check that

lim
k→∞

logLk

log k
= 1 , P-a.s.,

which yields that

lim sup
n→∞

logHn

n1/3
≤ θ , P-a.s.

Note that for all n and j, {Hn ≤ k} = {max1≤i≤k |Xi| ≥ n}. This implies that

lim inf
n→∞

1

(logn)3
max
1≤i≤n

|Xi| ≥
1

θ3
=

2

3π2σ2
, P-a.s.

It turns out that (logn)3 is the correct order of magnitude for max1≤i≤n |Xi|, and the constant
2

3π2σ2 is not exactly optimal:

Theorem 2.1. (Faraud et al. [60]) Under Assumption (∗) and suitable integrability con-

dition,

lim
n→∞

1

(logn)3
max
1≤i≤n

|Xi| =
8

3π2σ2
, P-a.s.

Theorem 2.1 tells us that the walk (Xi) is very slow. In the next section, we study the

terminal position Xn, and see that, usually, the walk is even slower.

3Often referred to as the (discrete) local time.
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3.Weak convergence

Under Assumption (∗), we have seen in the previous section that the maximal displace-

ment of the walk is of order of magnitude (logn)3. What about the terminal position Xn?

The study of the asymptotics of |Xn| is more delicate. Our answer says that |Xn| is

usually much smaller than max1≤i≤n |Xi|. Let (m(s), s ∈ [0, 1]) denote a standard Brownian

meander, and m(s) := supu∈[0, s]m(u). Recall that the standard Brownian meander can be

realized as follows: m(s) := |B(g+s(1−g))|

(1−g)1/2
, s ∈ [0, 1], where (B(t), t ∈ [0, 1]) is a standard

Brownian motion, with g := sup{t ≤ 1 : B(t) = 0}.

Theorem 3.1. Under Assumption (∗) and suitable integrability condition, for all u > 0,

lim
n→∞

P

( σ2 |Xn|

(logn)2
≤ u

)
=

∫ u

0

1

(2πr)1/2
P
(
η ≤

1

r1/2

)
dr ,

where σ2 := E(
∑
|x|=1 V (x)2e−V (x)) as before, and η := sups∈[0, 1][m(s)−m(s)].

We mention that
∫∞
0

1
(2πr)1/2

P(η ≤ 1
r1/2

) dr = 1 because E( 1
η
) = (π

2
)1/2, see [70]. The

proof of Theorem 3.1 can be found in [69].



Chapter IV

The spinal decomposition

In Chapter I, we have introduced the fundamental tool: the many-to-one formula (The-

orem 5.1). The proof is easy, but an important question remains: what does the new

one-dimensional random walk (Si) represent? We are going to answer this question with

the spinal decomposition theorem. Let us start with the simple case of the Galton–Watson

process.

1. Galton–Watson trees

Let (pi, i ≥ 0) be a probability on {0, 1, 2, · · · }, i.e., pi ≥ 0 for all i ≥ 0, such that
∑∞

i=0 pi = 1. To avoid trivial discussions, we exclude the case p0 + p1 = 1.

Let (Ω, F ) be the canonical space of rooted trees (so each ω ∈ Ω is a rooted tree), and

let T : Ω → Ω be the identity mapping. There exists a probability measure P on (Ω, F )

such that under P, T is a Galton–Watson tree with reproduction law (pi): each vertex has i

children with probability pi (for any i ≥ 0), and the reproductions are mutually independent

in a same generation, and also independent of everything up to that generation.

We do not describe the formalism of the canonical representation here, because it is not

required for our purposes (except for the fact that F = ∨∞n=0Fn,
1 where Fn is the sigma-

field generated by the individuals in generations 0 ≤ i ≤ n). All we need to know is its

existence. For full details, see Neveu [103].

For n ≥ 0, let Zn be the number of individuals in the n-th generation. We also write

m :=

∞∑

i=0

i pi ,

1That is, F is the smallest field generated by all Fn, n ≥ 0.
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and we assume that m < ∞. Let

Mn :=
Zn

mn
, n ≥ 0 .

Then (Mn, n ≥ 0) is a non-negative martingale with respect to the filtration (Fn), and

E(Mn) = 1, ∀n ≥ 0.

By Kolmogorov’s extension theorem, there exists a probability measure Q on (Ω, F )

such that for any n ≥ 0,

Q|Fn
= Mn •P|Fn

,

where P|Fn
and Q|Fn

denote the restrictions of P and Q on Fn, respectively. For any n,

Q(Zn > 0) = E(1{Zn>0}Mn) = E(Mn) = 1.

As such, Q(Zn > 0, ∀n) = 1, which means Q-almost surely non-extinction of T. The tree

T under Q is called a size-biased Galton–Watson tree. Let us give a description of its

paths.

Let N be the number of children of the root ∅. If N ≥ 1, then there are N individuals

in the first generation. We write T1, T2, · · · , TN for the N subtrees rooted at each of the N

individuals in the first generation.

Lemma 1.1. Let k ≥ 1, and let A1, A2, · · · , Ak be elements of F . We have

Q(N = k, T1 ∈ A1, · · · ,Tk ∈ Ak)

=
kpk
m

1

k

k∑

i=1

P(A1) · · ·P(Ai−1)Q(Ai)P(Ai+1) · · ·P(Ak) .(1.1)

Proof. By the monotone class theorem, we may assume, without loss of generality, that A1,

A2, · · · , Ak are elements of Fn, for some n. Then we have

Q(N = k, T1 ∈ A1, · · · , Tk ∈ Ak) = E
(Zn+1

mn+1
1{N=k, T1∈A1, ··· ,Tk∈Ak}

)
.

On the event {N = k}, we can write Zn+1 =
∑k

i=1 Z
(i)
n , where Z

(i)
n denotes the number

of individuals in the n-th generation of the subtree rooted at the i-th individual in the first

generation. Accordingly,

Q(N = k, T1 ∈ A1, · · · ,Tk ∈ Ak) =
1

mn+1
P(N = k)

k∑

i=1

E
{
Z(i)

n 1{T1∈A1,··· ,Tk∈Ak}

∣∣∣N = k
}
.
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Since P(N = k) = pk, and

E{Z(i)
n 1{T1∈A1,··· ,Tk∈Ak} |N = k} = E[Zn 1{T∈Ai}]

∏

j 6=i

P(Aj) = mn Q(Ai)
∏

j 6=i

P(Aj),

proving the lemma. �

Equation (1.1) tells us the following fact about the size-biased Galton–Watson tree: The

root has the biased distribution, i.e., having k children with probability k pk
m

; among the

individuals in the first generation, one of them is chosen randomly (according to the uniform

distribution) such that the subtree rooted at this vertex is a size-biased Galton–Watson tree,

whereas the subtrees rooted at all other vertices in the first generation are independent copies

of the usual Galton–Watson tree.

Iterating the procedure, we obtain a decomposition of the size-biased Galton–Watson

tree with an (infinite) spine and with i.i.d. copies of the usual Galton–Watson tree: The root

∅ =: w0 has the biased distribution, i.e., having k children with probability k pk
m

. Among the

children of the root, one of them is chosen randomly (according to the uniform distribution)

as the element of the spine in the first generation (denoted by w1). We attach subtrees

rooted at all other children; these subtrees are independent copies of the usual Galton–

Watson tree. The vertex w1 has the biased distribution. Among the children of w1, we

choose at random one of them as the element of the spine in the second generation (denoted

by w2). Independent copies of the usual Galton–Watson tree are attached as subtrees rooted

at all other children of w1, whereas w2 has the biased distribution. And so on. See Figure 4

below.

2. Branching random walks

Throughout this section, we assume that

E
( ∑

x: |x|=1

e−V (x)
)
= 1 .

Consider the additive martingale

Mn :=
∑

|x|=n

e−V (x) , n ≥ 0 .

Let Q be the probability measure on (Ω, F ) such that for any n ≥ 0,

Q|Fn
= Mn •P|Fn

.
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Figure 4. A size-biased Galton–Watson tree
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As for the Galton–Watson tree, we see that Q(
∑
|x|=1 1 > 0) = 1. The process (V (x), x ∈ T )

under Q is called a size-biased branching random walk.

The root ∅ =: w0 has the biased distribution, in the sense that EQ[F (V (x), |x| = 1)] =

E[F (V (x), |x| = 1)M1]. Among the children y of the root, one of them is chosen as w1 with

probability proportional to e−V (y) (i.e., with probability e−V (y)

M1
). We attach subtrees rooted

at all other children; these subtrees are independent copies of the usual branching random

walk. The vertex w1 has the biased distribution, shifted at position a := V (w1). Among the

children y of w1, one of them is chosen as w2 with probability proportional to e−V (y). We

iterate the procedure. See Figure 5 below.

By the description, V (wn)−V (wn−1), for n ≥ 1, are i.i.d. under Q.2 For any measurable

function h : R → R+,

EQ[h(V (w1))] = EQ

[ ∑

|x|=1

1{w1=x}h(V (x))
]
= EQ

[
EQ

( ∑

|x|=1

1{w1=x}h(V (x)) |F1

)]
.

We note that

EQ

( ∑

|x|=1

1{w1=x}h(V (x)) |F1

)
=

∑

|x|=1

h(V (x))Q(w1 = x |F1

)
=

∑

|x|=1

h(V (x))
e−V (x)

M1
,

so that

EQ[h(V (w1))] = EQ

[ ∑

|x|=1

h(V (x))
e−V (x)

M1

]
= E

[ ∑

|x|=1

h(V (x))e−V (x)
]
,

2Notation: V (∅) := 0.
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Figure 5. A size-biased branching random walk
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which is E[h(S1)] by definition of S1 in (5.1) of Chapter I. Therefore, (V (wn), n ≥ 1) under

Q has the same distribution as (Sn, n ≥ 1) under P: the associated one-dimensional random

walk in the many-to-one formula is nothing else but the size-biased branching random walk

along the spine.

Example 2.1. Under Assumption (∗), we have Mn → 0 a.s. (see Theorem 6.1 of Chapter

I).

In fact, writing V (wn) =
∑n

i=1[V (wi)−V (wi−1)], where V (wi)−V (wi−1), i ≥ 1, are i.i.d.

under Q with EQ[V (w1)] = E[S1] = 0, we have

lim inf
n→∞

V (wn) = −∞, Q-a.s.

Since Mn =
∑
|x|=n e

−V (x) ≥ e−V (wn), this implies that

lim sup
n→∞

Mn = ∞, Q-a.s.

According to Exercise 3.6 of Durrett ([54], p. 210),3 this is equivalent to saying that Mn → 0

P-a.s. �

The idea of the spinal decomposition for branching random walks goes back at least to

Kahane and Peyrière [75] and to Bingham and Doney [29]. It has appeared in various forms

3Let (Fn) be a filtration and let P et Q be probability measures on F∞ := ∨∞n=0Fn such that Q|Fn
=

ηn •P|Fn
, ∀n ≥ 0. Then lim supn→∞ ηn = ∞ Q-a.s., if and only if ηn → 0 P-a.s.
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in the literature. The formalism we use in this chapter comes from Lyons, Pemantle and

Peres [86] for Galton–Watson trees, and from Lyons [84] for branching random walks. For

branching Brownian motion, see Chauvin and Rouault [45].

The spinal decomposition is the tree version of Girsanov’s theorem, and is powerful in

the study of the branching random walk. However, it is stated for the branching random

walk under Q, which is not equivalent to P on F (and not even on Fn). So one needs to

be careful when applying the spinal decomposition.
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72.

[80] Lalley, S.P. and Sellke, T. (1987). A conditional limit theorem for the frontier of a
branching Brownian motion. Ann. Probab. 15, 1052–1061.

[81] Liu, Q.S. (2000). On generalized multiplicative cascades. Stoch. Proc. Appl. 86, 263–286.

[82] Lyons, R. (1990). Random walks and percolation on trees. Ann. Probab. 18, 931–958.

[83] Lyons, R. (1992). Random walks, capacity and percolation on trees. Ann. Probab. 20,
2043–2088.

[84] Lyons, R. (1997). A simple path to Biggins’ martingale convergence for branching ran-
dom walk. In: Classical and Modern Branching Processes (Eds.: K.B. Athreya and
P. Jagers). IMA Volumes in Mathematics and its Applications 84, 217–221. Springer,
New York.

[85] Lyons, R. and Pemantle, R. (1992). Random walk in a random environment and first-
passage percolation on trees. Ann. Probab. 20, 125–136.

[86] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of L logL criteria for
mean behavior of branching processes. Ann. Probab. 23, 1125–1138.

[87] Lyons, R., Pemantle, R. and Peres, Y. (1996). Biased random walks on Galton–Watson
trees. Probab. Theory Related Fields 106, 249–264.

[88] Madaule, T. (2011+). Convergence in law for the branching random walk seen from its
tip. J. Theoret. Probab. (to appear) ArXiv:1107.2543

[89] Madaule, T. (2013+). Maximum of a log-correlated gaussian field. ArXiv:1307.1365



BIBLIOGRAPHY 39

[90] McKean, H.P. (1975). Application of Brownian motion to the equation of Kolmogorov-
Petrovskii-Piskunov. Comm. Pure Appl. Math. 28, 323–331.

[91] McKean, H.P. (1976). A correction to: “Application of Brownian motion to the equation
of Kolmogorov-Petrovskii-Piskunov”. Comm. Pure Appl. Math. 29, 553–554.

[92] Maillard, P. (2013+). Speed and fluctuations of N -particle branching Brownian motion
with spatial selection. ArXiv:1304.0562

[93] Maillard, P. and Zeitouni, O. (2013+). Slowdown in branching Brownian motion with
inhomogeneous variance. ArXiv:1307.3583

[94] Mallein, B. (2013+). Position of the rightmost individual in a branching random walk
through an interface. ArXiv:1305.6201

[95] Mallein, B. (2013+). Maximal displacement of a branching random walk in time-
inhomogeneous environment. ArXiv:1307.4496

[96] Mallein, B. (2015+). Branching random walk with selection at critical rate.
ArXiv:1502.07390

[97] Mallein, B. (2015+).N -Branching random walk with α-stable spine. ArXiv:1503.03762
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[101] Mueller, C., Mytnik, L. and Quastel, J. (2008). Small noise asymptotics of traveling
waves. Markov Proc. Related Fields 14, 333–342.

[102] Mueller, C., Mytnik, L. and Quastel, J. (2011). Effect of noise on front propagation in
reaction-diffusion equations of KPP type. Invent. Math. 184, 405–453.

[103] Neveu, J. (1986). Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré
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